3.3.7 \(\int \frac {(a+i a \tan (c+d x))^{5/2}}{\tan ^{\frac {7}{2}}(c+d x)} \, dx\) [207]

Optimal. Leaf size=156 \[ -\frac {(4+4 i) a^{5/2} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {4 a^2 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-\frac {2 i a (a+i a \tan (c+d x))^{3/2}}{3 d \tan ^{\frac {3}{2}}(c+d x)}-\frac {2 (a+i a \tan (c+d x))^{5/2}}{5 d \tan ^{\frac {5}{2}}(c+d x)} \]

[Out]

(-4-4*I)*a^(5/2)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/d+4*a^2*(a+I*a*tan(d*x+c))^(
1/2)/d/tan(d*x+c)^(1/2)-2/3*I*a*(a+I*a*tan(d*x+c))^(3/2)/d/tan(d*x+c)^(3/2)-2/5*(a+I*a*tan(d*x+c))^(5/2)/d/tan
(d*x+c)^(5/2)

________________________________________________________________________________________

Rubi [A]
time = 0.18, antiderivative size = 156, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3629, 3626, 3625, 211} \begin {gather*} -\frac {(4+4 i) a^{5/2} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {4 a^2 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-\frac {2 i a (a+i a \tan (c+d x))^{3/2}}{3 d \tan ^{\frac {3}{2}}(c+d x)}-\frac {2 (a+i a \tan (c+d x))^{5/2}}{5 d \tan ^{\frac {5}{2}}(c+d x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + I*a*Tan[c + d*x])^(5/2)/Tan[c + d*x]^(7/2),x]

[Out]

((-4 - 4*I)*a^(5/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d + (4*a^2*Sqrt[
a + I*a*Tan[c + d*x]])/(d*Sqrt[Tan[c + d*x]]) - (((2*I)/3)*a*(a + I*a*Tan[c + d*x])^(3/2))/(d*Tan[c + d*x]^(3/
2)) - (2*(a + I*a*Tan[c + d*x])^(5/2))/(5*d*Tan[c + d*x]^(5/2))

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3625

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
-2*a*(b/f), Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3626

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[a*b*(a + b*Tan[e + f*x])^(m - 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m - 1)*(a*c - b*d))), x] + Dist[2*(a^2/(a
*c - b*d)), Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f},
 x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && EqQ[m + n, 0] && GtQ[m, 1/2]

Rule 3629

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(-d)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(f*m*(c^2 + d^2))), x] + Dist[a/(a*c - b*d), Int[(
a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c -
a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && EqQ[m + n + 1, 0] &&  !LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {(a+i a \tan (c+d x))^{5/2}}{\tan ^{\frac {7}{2}}(c+d x)} \, dx &=-\frac {2 (a+i a \tan (c+d x))^{5/2}}{5 d \tan ^{\frac {5}{2}}(c+d x)}+i \int \frac {(a+i a \tan (c+d x))^{5/2}}{\tan ^{\frac {5}{2}}(c+d x)} \, dx\\ &=-\frac {2 i a (a+i a \tan (c+d x))^{3/2}}{3 d \tan ^{\frac {3}{2}}(c+d x)}-\frac {2 (a+i a \tan (c+d x))^{5/2}}{5 d \tan ^{\frac {5}{2}}(c+d x)}-(2 a) \int \frac {(a+i a \tan (c+d x))^{3/2}}{\tan ^{\frac {3}{2}}(c+d x)} \, dx\\ &=\frac {4 a^2 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-\frac {2 i a (a+i a \tan (c+d x))^{3/2}}{3 d \tan ^{\frac {3}{2}}(c+d x)}-\frac {2 (a+i a \tan (c+d x))^{5/2}}{5 d \tan ^{\frac {5}{2}}(c+d x)}-\left (4 i a^2\right ) \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx\\ &=\frac {4 a^2 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-\frac {2 i a (a+i a \tan (c+d x))^{3/2}}{3 d \tan ^{\frac {3}{2}}(c+d x)}-\frac {2 (a+i a \tan (c+d x))^{5/2}}{5 d \tan ^{\frac {5}{2}}(c+d x)}-\frac {\left (8 a^4\right ) \text {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}\\ &=-\frac {(4+4 i) a^{5/2} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {4 a^2 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-\frac {2 i a (a+i a \tan (c+d x))^{3/2}}{3 d \tan ^{\frac {3}{2}}(c+d x)}-\frac {2 (a+i a \tan (c+d x))^{5/2}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 3.72, size = 187, normalized size = 1.20 \begin {gather*} -\frac {4 i a^2 e^{-i (c+d x)} \left (e^{i (c+d x)} \left (15-35 e^{2 i (c+d x)}+26 e^{4 i (c+d x)}\right )-15 \left (-1+e^{2 i (c+d x)}\right )^{5/2} \tanh ^{-1}\left (\frac {e^{i (c+d x)}}{\sqrt {-1+e^{2 i (c+d x)}}}\right )\right ) \cot (c+d x) \sqrt {a+i a \tan (c+d x)}}{15 d \sqrt {-\frac {i \left (-1+e^{2 i (c+d x)}\right )}{1+e^{2 i (c+d x)}}} \left (-1+e^{4 i (c+d x)}\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + I*a*Tan[c + d*x])^(5/2)/Tan[c + d*x]^(7/2),x]

[Out]

(((-4*I)/15)*a^2*(E^(I*(c + d*x))*(15 - 35*E^((2*I)*(c + d*x)) + 26*E^((4*I)*(c + d*x))) - 15*(-1 + E^((2*I)*(
c + d*x)))^(5/2)*ArcTanh[E^(I*(c + d*x))/Sqrt[-1 + E^((2*I)*(c + d*x))]])*Cot[c + d*x]*Sqrt[a + I*a*Tan[c + d*
x]])/(d*E^(I*(c + d*x))*Sqrt[((-I)*(-1 + E^((2*I)*(c + d*x))))/(1 + E^((2*I)*(c + d*x)))]*(-1 + E^((4*I)*(c +
d*x))))

________________________________________________________________________________________

Maple [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 413 vs. \(2 (127 ) = 254\).
time = 0.17, size = 414, normalized size = 2.65

method result size
derivativedivides \(\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a^{2} \left (15 i \sqrt {i a}\, \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{3}\left (d x +c \right )\right )+15 \sqrt {i a}\, \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{3}\left (d x +c \right )\right )+76 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \left (\tan ^{2}\left (d x +c \right )\right )+60 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \left (\tan ^{3}\left (d x +c \right )\right )-22 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \tan \left (d x +c \right )-6 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\right )}{15 d \tan \left (d x +c \right )^{\frac {5}{2}} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(414\)
default \(\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a^{2} \left (15 i \sqrt {i a}\, \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{3}\left (d x +c \right )\right )+15 \sqrt {i a}\, \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{3}\left (d x +c \right )\right )+76 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \left (\tan ^{2}\left (d x +c \right )\right )+60 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \left (\tan ^{3}\left (d x +c \right )\right )-22 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \tan \left (d x +c \right )-6 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\right )}{15 d \tan \left (d x +c \right )^{\frac {5}{2}} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(414\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+I*a*tan(d*x+c))^(5/2)/tan(d*x+c)^(7/2),x,method=_RETURNVERBOSE)

[Out]

1/15/d*(a*(1+I*tan(d*x+c)))^(1/2)*a^2/tan(d*x+c)^(5/2)*(15*I*(I*a)^(1/2)*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*
(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^3+15*(I*a)^(1/2)*2^(1/2
)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan
(d*x+c)^3+76*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^2+60*ln(1/2*(2*I*a*tan(
d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*a*tan(d*x+c)^3-22*I*ta
n(d*x+c)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)*(-I*a)^(1/2)-6*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2
)*(I*a)^(1/2)*(-I*a)^(1/2))/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)/(I*a)^(1/2)/(-I*a)^(1/2)

________________________________________________________________________________________

Maxima [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 1284 vs. \(2 (118) = 236\).
time = 0.68, size = 1284, normalized size = 8.23 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(5/2)/tan(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

2/15*(sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)*(((30*I - 30)*a^2*cos(3*d*x + 3*c
) - (31*I - 31)*a^2*cos(d*x + c) - (30*I + 30)*a^2*sin(3*d*x + 3*c) + (31*I + 31)*a^2*sin(d*x + c))*cos(3/2*ar
ctan2(sin(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1)) + (-(30*I + 30)*a^2*cos(3*d*x + 3*c) + (31*I + 31)*a^2*cos(d*x
 + c) - (30*I - 30)*a^2*sin(3*d*x + 3*c) + (31*I - 31)*a^2*sin(d*x + c))*sin(3/2*arctan2(sin(2*d*x + 2*c), -co
s(2*d*x + 2*c) + 1)))*sqrt(a) + 15*(2*(-(I - 1)*a^2*cos(2*d*x + 2*c)^2 - (I - 1)*a^2*sin(2*d*x + 2*c)^2 + (2*I
 - 2)*a^2*cos(2*d*x + 2*c) - (I - 1)*a^2)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c
) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1)) - cos(d*x + c), (cos(2*d*x + 2*c)^2 + s
in(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1)) -
sin(d*x + c)) + ((I + 1)*a^2*cos(2*d*x + 2*c)^2 + (I + 1)*a^2*sin(2*d*x + 2*c)^2 - (2*I + 2)*a^2*cos(2*d*x + 2
*c) + (I + 1)*a^2)*log(cos(d*x + c)^2 + sin(d*x + c)^2 + sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(
2*d*x + 2*c) + 1)*(cos(1/2*arctan2(sin(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1))^2 + sin(1/2*arctan2(sin(2*d*x + 2
*c), -cos(2*d*x + 2*c) + 1))^2) - 2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*(
cos(1/2*arctan2(sin(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1))*sin(d*x + c) + cos(d*x + c)*sin(1/2*arctan2(sin(2*d*
x + 2*c), -cos(2*d*x + 2*c) + 1)))))*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*
sqrt(a) + ((-(30*I - 30)*a^2*cos(5*d*x + 5*c) + (25*I - 25)*a^2*cos(3*d*x + 3*c) - (7*I - 7)*a^2*cos(d*x + c)
+ (30*I + 30)*a^2*sin(5*d*x + 5*c) - (25*I + 25)*a^2*sin(3*d*x + 3*c) + (7*I + 7)*a^2*sin(d*x + c))*cos(5/2*ar
ctan2(sin(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1)) + 8*(((I - 1)*a^2*cos(d*x + c) - (I + 1)*a^2*sin(d*x + c))*cos
(2*d*x + 2*c)^2 + (I - 1)*a^2*cos(d*x + c) + ((I - 1)*a^2*cos(d*x + c) - (I + 1)*a^2*sin(d*x + c))*sin(2*d*x +
 2*c)^2 - (I + 1)*a^2*sin(d*x + c) + 2*(-(I - 1)*a^2*cos(d*x + c) + (I + 1)*a^2*sin(d*x + c))*cos(2*d*x + 2*c)
)*cos(1/2*arctan2(sin(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1)) + ((30*I + 30)*a^2*cos(5*d*x + 5*c) - (25*I + 25)*
a^2*cos(3*d*x + 3*c) + (7*I + 7)*a^2*cos(d*x + c) + (30*I - 30)*a^2*sin(5*d*x + 5*c) - (25*I - 25)*a^2*sin(3*d
*x + 3*c) + (7*I - 7)*a^2*sin(d*x + c))*sin(5/2*arctan2(sin(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1)) + 8*((-(I +
1)*a^2*cos(d*x + c) - (I - 1)*a^2*sin(d*x + c))*cos(2*d*x + 2*c)^2 - (I + 1)*a^2*cos(d*x + c) + (-(I + 1)*a^2*
cos(d*x + c) - (I - 1)*a^2*sin(d*x + c))*sin(2*d*x + 2*c)^2 - (I - 1)*a^2*sin(d*x + c) + 2*((I + 1)*a^2*cos(d*
x + c) + (I - 1)*a^2*sin(d*x + c))*cos(2*d*x + 2*c))*sin(1/2*arctan2(sin(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1))
)*sqrt(a))/((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(5/4)*d)

________________________________________________________________________________________

Fricas [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 466 vs. \(2 (118) = 236\).
time = 0.39, size = 466, normalized size = 2.99 \begin {gather*} -\frac {8 \, \sqrt {2} {\left (-26 i \, a^{2} e^{\left (7 i \, d x + 7 i \, c\right )} + 9 i \, a^{2} e^{\left (5 i \, d x + 5 i \, c\right )} + 20 i \, a^{2} e^{\left (3 i \, d x + 3 i \, c\right )} - 15 i \, a^{2} e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} - 15 \, \sqrt {\frac {32 i \, a^{5}}{d^{2}}} {\left (d e^{\left (6 i \, d x + 6 i \, c\right )} - 3 \, d e^{\left (4 i \, d x + 4 i \, c\right )} + 3 \, d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \log \left (\frac {{\left (4 \, \sqrt {2} {\left (a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} + i \, \sqrt {\frac {32 i \, a^{5}}{d^{2}}} d e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{4 \, a^{2}}\right ) + 15 \, \sqrt {\frac {32 i \, a^{5}}{d^{2}}} {\left (d e^{\left (6 i \, d x + 6 i \, c\right )} - 3 \, d e^{\left (4 i \, d x + 4 i \, c\right )} + 3 \, d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \log \left (\frac {{\left (4 \, \sqrt {2} {\left (a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} - i \, \sqrt {\frac {32 i \, a^{5}}{d^{2}}} d e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{4 \, a^{2}}\right )}{30 \, {\left (d e^{\left (6 i \, d x + 6 i \, c\right )} - 3 \, d e^{\left (4 i \, d x + 4 i \, c\right )} + 3 \, d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(5/2)/tan(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

-1/30*(8*sqrt(2)*(-26*I*a^2*e^(7*I*d*x + 7*I*c) + 9*I*a^2*e^(5*I*d*x + 5*I*c) + 20*I*a^2*e^(3*I*d*x + 3*I*c) -
 15*I*a^2*e^(I*d*x + I*c))*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2
*I*c) + 1)) - 15*sqrt(32*I*a^5/d^2)*(d*e^(6*I*d*x + 6*I*c) - 3*d*e^(4*I*d*x + 4*I*c) + 3*d*e^(2*I*d*x + 2*I*c)
 - d)*log(1/4*(4*sqrt(2)*(a^2*e^(2*I*d*x + 2*I*c) + a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x
 + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) + I*sqrt(32*I*a^5/d^2)*d*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/a^2) + 15
*sqrt(32*I*a^5/d^2)*(d*e^(6*I*d*x + 6*I*c) - 3*d*e^(4*I*d*x + 4*I*c) + 3*d*e^(2*I*d*x + 2*I*c) - d)*log(1/4*(4
*sqrt(2)*(a^2*e^(2*I*d*x + 2*I*c) + a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(
e^(2*I*d*x + 2*I*c) + 1)) - I*sqrt(32*I*a^5/d^2)*d*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/a^2))/(d*e^(6*I*d*x + 6*I
*c) - 3*d*e^(4*I*d*x + 4*I*c) + 3*d*e^(2*I*d*x + 2*I*c) - d)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))**(5/2)/tan(d*x+c)**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(5/2)/tan(d*x+c)^(7/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, need to choose a branch for the root of a polynomial with parameters. This might be wrong.Non regu
lar value [

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2}}{{\mathrm {tan}\left (c+d\,x\right )}^{7/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*tan(c + d*x)*1i)^(5/2)/tan(c + d*x)^(7/2),x)

[Out]

int((a + a*tan(c + d*x)*1i)^(5/2)/tan(c + d*x)^(7/2), x)

________________________________________________________________________________________